Hybrid Use of Structural Equation Modeling and Machine Learning: Literature Review and Future Potential
DOI:
https://doi.org/10.5281/zenodo.15740696Keywords:
Structural equation modeling, Machine learning, Hybrit modellingAbstract
The aim of this paper is to comprehensively review the basic concepts of structural equation modeling (SEM) and machine learning, their application areas in the literature, and hybrid studies where they are used together. While SEM provides a robust theoretical framework for analyzing complex relationships, machine learning is notable for its ability to discover patterns from large data sets. The integration of the two methods allows for more in-depth analyses and stronger predictions in a wide range of fields from social sciences to healthcare. In this context, the review highlights the contributions and future potential of the combination of SEM and machine learning to research processes.
Downloads
References
Aggarwal, C. C. (2013). Outlier Analysis. Springer Science & Business Media.
Ahmed, I., Sulaiman, A., & Khan, A. (2021). Educational Outcome Predictions through SEM and ML Techniques. Educational Sciences: Theory & Practice, 21(2), 122-135.
Aksakallı, N., & Keleş, S. (2018). Consumer Behavior and Brand Loyalty. Journal of Business Research, 90, 252-259.
Alhassan, A., Qadir, J., & Khan, A. (2019). SEM and ML in Organizational Performance Analysis. Journal of Business Research, 99, 282-290.
Alpaydin, E. (2020). Introduction to Machine Learning (3rd ed.). MIT Press.
Arbuckle, J. (2010). AMOS user’s guide. Chicago, IL: Small Waters
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Becker, T. E., & Aguinis, H. (2023). Controlling confounding in SEM. Journal of Business Research, 156, 103567.
Bentler, P. M., & Wu, E. J. (1995). EQS for Windows user's guide: [version 5]. Multivariate Software.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley.
Bowen, N. K., & Guo, S. (2011). Structural equation modeling. Oxford University Press.
Brown, T., & Smith, J. (2021). Integrating SEM and ML for Predictive Health Analytics. Journal of Medical Systems, 45(4), 56-67.
Brown, T., et al. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
Brownlee, J., et al. (2020). A Gentle Introduction to Machine Learning and Neural Networks. Machine Learning Mastery.
Brownlee, J., Zhang, L., & Yang, S. (2024). Neural network architectures and their impact on data patterns. AI & Neural Computation, 19(4), 313–328.
Byrne, B. M. (2016). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (3rd ed.). Routledge.
Carion, N., et al. (2020). End-to-End Object Detection with Transformers. European Conference on Computer Vision (ECCV).
Chan, W., & Yuen, K. (2015). Teacher Efficacy and Student Engagement. Teaching and Teacher Education, 47, 38-47.
Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-Supervised Learning. MIT Press.
Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Misspecification. Structural Equation Modeling, 14(3), 464-488.
Chen, F., & Wang, L. (2021). Data fusion approaches with SEM and machine learning for environmental prediction. Environmental Modeling & Assessment, 26(2), 89-102.
Chen, T., et al. (2020). A Simple Framework for Contrastive Learning of Visual Representations. arXiv preprint arXiv:2002.05709.
Chen, Y., Lin, Z., & Wu, P. (2022). Patient satisfaction in telemedicine: A SEM analysis. Health Informatics Journal, 26(4), 112–125.
Chen, Y., Yang, J., & Huang, T. (2021). Environmental Impact Assessments using SEM and Machine Learning Models. Environmental Science & Policy, 117, 234-243.
Choi, S., Park, J., & Kim, T. (2022). Machine learning-based anomaly detection in cybersecurity. Cybersecurity Advances, 12(3), 239–253.
Davis, K., Turner, L., & White, R. (2020). Predicting Health Risk Factors using SEM and ML. Health Informatics Journal, 26(1), 298-309.
Davis, M., & Kim, Y. (2020). Predicting Mental Health Outcomes with SEM and ML. International Journal of Mental Health Systems, 14(1), 12-24.
Devlin, J., et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
Dosovitskiy, A., et al. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929.
Fang, M., & Li, H. (2021). Teacher training and student performance: A SEM approach. Educational Assessment, 36(1), 25–39.
Fernandez, J., Garcia, P., & Lopez, R. (2019). Financial Risk Modeling using SEM and Machine Learning Approaches. Journal of Risk Research, 22(5), 635-650.
Finch, H., French, B. F., & Immekus, J. C. (2016). Applied psychometrics using SPSS and AMOS. IAP.
Garcia, M., Lopez, H., & Alvarez, J. (2024). ML models predicting agricultural trends and crop yields. Smart Agriculture Journal, 11(1), 57–72.
Gerbing, D. W., & Anderson, J. C. (1988). An Update on Confirmatory Factor Analysis. Psychological Bulletin, 103(3), 411-423.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Guo, Y., & Fraser, B. (2021). Using SEM to model psychological intervention impacts. Psychological Methods, 26(4), 345-360.
Gupta, R., & Singh, P. (2018). Improving Student Performance Predictions through SEM and Machine Learning. Journal of Educational Research, 111(5), 595-608.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques. Elsevier.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
He, K., et al. (2019). Bag of Tricks for Image Classification with Convolutional Neural Networks. arXiv preprint arXiv:1812.01187.
Hoyle, R. H. (2012). Handbook of Structural Equation Modeling. Guilford Press.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Iacobucci, D. (2009). Structural Equations Modeling: Fit Indices and Data Analysis. Journal of Consumer Psychology, 20(1), 76-82.
İlhan, M., & Çetin, B. (2014). LISREL ve AMOS Programları Kullanılarak Gerçekleştirilen Yapısal Eşitlik Modeli (YEM) Analizlerine İlişkin Sonuçların Karşılaştırılması. Journal of Measurement and Evaluation in Education and Psychology, 5(2), 26-42. https://doi.org/10.21031/epod.31126
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.
Jang, C., et al. (2023). Effects of blended learning: A SEM approach. Education Research International, 2023, 345678.
Johnson, A., & Smith, L. (2020). Using SEM and ML to Predict Educational Success. Educational Studies, 46(4), 450-465.
Johnson, D., & Brown, R. (2019). Work-life balance explored through SEM. Journal of Psychology, 57(4), 123–137.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural Equation Modeling with the SIMPLIS Command. Chicago: Scientific Software International.
Joreskog, K. G., Sorbom, D., Du Toit, S., & Du Toit, M. (1999). LISREL 8: New statistical features. Chicago: Scientific Software International, 19, 6-7.
Jumper, J., et al. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature, 596(7873), 583-589.
Katharopoulos, A., et al. (2020). Transformers are RNNs: Fast Autoregressive Transformers. arXiv preprint arXiv:2006.16236.
Keith, T. Z. (2014). Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling (2nd ed.). Routledge.
Kelloway, E. K. (2014). Using Mplus for structural equation modeling: A researcher's guide. Sage Publications.
Kim, H., & Lee, J. (2017). Customer Loyalty Prediction Using SEM and ML. Journal of Retailing and Consumer Services, 36, 124-131.
Kim, J., Park, Y., & Lee, S. (2021). Speech recognition models under noisy conditions. Journal of Machine Learning Research, 22(1), 123–139.
Kim, S. H., et al. (2022). SEM application in technology adoption studies. Technological Forecasting and Social Change, 173, 121345.
Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling. New York: Guilford Press.
Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling. Guilford Press.
Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling. New York: Guilford Press.
Kolesnikov, A., et al. (2020). Big Transfer (BiT): General Visual Representation Learning at Scale. arXiv preprint arXiv:1912.11370.
Kumar, R., & Patel, S. (2023). SEM and ML for Enhancing Online Retail Predictions. International Journal of Retail & Distribution Management, 51(2), 153-167.
Kuo, C.-L. (2012). An Empirical Study of Consumer Behavior. Journal of Consumer Marketing, 29(1), 22-30.
Kwok, O.-M., Cheung, M. W. L., Jak, S., Ryu, E., & Wu, J. Y. (2018). Recent advancements in Structural Equation Modeling (SEM): From both methodological and application perspectives. Frontiers in Psychology, 9, 1936. https://doi.org/10.3389/fpsyg.2018.01936
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Lee, A., & Tan, B. (2020). Social capital and community resilience: SEM findings. Journal of Social Research, 38(2), 95–110.
Lee, C., & Kwon, K. (2013). The Role of Social Support in Health. International Journal of Public Health, 58(4), 521-529.
Lee, H., Kim, A., & Park, B. (2023). Social media engagement prediction using machine learning models. Social Media Analytics Journal, 10(2), 100–112.
Lee, J., & Park, H. (2019). Leadership and performance: A SEM study. Organizational Behavior Journal, 34(2), 123-145.
Li, D., et al. (2022). GPT-4: Exploring the Depth of Multimodal Learning. arXiv preprint arXiv:2204.03459.
Li, J., Chen, Y., & Zhao, M. (2018). Health Outcome Predictions with SEM and Machine Learning. Journal of Health Analytics, 4(1), 23-35.
Liu, T., & Zhang, Q. (2022). SEM and Machine Learning in Agricultural Yield Predictions. Computers and Electronics in Agriculture, 190, 106423.
Liu, Z., et al. (2021). Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. arXiv preprint arXiv:2103.14030.
Lleras, C. (2005). Path analysis. Encyclopedia of social measurement, 3(1), 25-30.
MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press.
Marsh, H. W., & Hau, K. T. (2004). The Use of Structural Equation Modeling in Educational Research. Educational Psychology Review, 16(3), 241-266.
Martínez, R., González, P., & Silva, J. (2020). Digital advertising effectiveness via SEM. Journal of Marketing Analytics, 12(3), 54–67.
Martins, F., Dias, L., & Pereira, R. (2018). Predicting Consumer Behavior with SEM and ML. Journal of Consumer Marketing, 35(5), 485-495.
Memon, M., Shiau, W., & Aguinis, H. (2024). Using control variables to enhance SEM models. Journal of Applied Structural Equation Modeling, 12(1), 1-20.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
Müller, J. & Faller, G. (2019). Integrating SEM and Machine Learning: A Review of Applications in Social Research. Social Indicators Research, 143(3), 1281-1300.
Müller, S., Schmidt, T., & Braun, J. (2020). Behavioral Outcome Predictions with SEM and ML. Behavioral Research Methods, 52(2), 765-774.
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
Muthén, B.O., & Muthén, L. (2004). Mplus user’s guide. Los Angeles, CA: Muthén & Muthén.
Nguyen, D., Tran, K., & Hoang, T. (2023). Autonomous driving systems enhanced by ML methods. Computer Vision Research Journal, 45(1), 25–40.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future-big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216-1219.
Oliveira, T., & Coelho, P. (2019). Combining SEM and ML for Social Behavior Analysis. Social Indicators Research, 143(3), 1281-1300.
Park, J., & Lim, K. (2022). SEM and ML in Online Shopping Behavior Analysis. Journal of Electronic Commerce Research, 23(3), 251-263.
Park, J., Kim, H., & Lee, S. (2021). Visitor satisfaction at heritage sites: An SEM perspective. Journal of Tourism Studies, 44(2), 88–104.
Patel, A., Kumar, R., & Lee, Y. (2024). Robotic decision-making with machine learning: Path planning in robotics. Journal of Robotics Engineering, 20(1), 105–120.
Pérez, L., Castro, F., & Torres, G. (2019). Ecosystem services interdependencies using SEM. Ecological Modelling, 229, 33–47.
Preacher, K. J., & Zyphur, M. J. (2018). The integration of hierarchical models with machine learning for multi-level behavioral data analysis. Journal of Behavioral Research Methods, 50(3), 1022-1035.
Radford, A., et al. (2021). Learning Transferable Visual Models from Natural Language Supervision. International Conference on Machine Learning (ICML).
Raffel, C., et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140), 1-67.
Ramesh, A., et al. (2021). Zero-Shot Text-to-Image Generation. arXiv preprint arXiv:2102.12092.
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A Critical Look at the Use of PLS-SEM. Journal of the Academy of Marketing Science, 40(3), 1-11.
Roberts, L., & Allen, J. (2019). Financial Forecasting using SEM and ML Models. Journal of Finance and Accountancy, 25, 34-45.
Roy, S., Bose, S., & Gupta, M. (2022). Analyzing waste management practices with SEM. Environmental Sciences Review, 28(3), 78–92.
Schreiber, J. B., Stage, F. K., King, J., Nora, A., & Barlow, E. A. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338.
Shiau, W., et al. (2024). SEM in digital marketing and consumer behavior. Business Analytics Journal, 10(2), 45-60.
Shinde, P. P., & Shah, S. (2018, August). A review of machine learning and deep learning applications. In 2018 Fourth international conference on computing communication control and automation (ICCUBEA) (pp. 1-6). IEEE.
Smith, R., Jones, T., & Brown, L. (2021). Forecasting financial trends with machine learning: Time-series analysis. Applied Financial Modeling Journal, 15(2), 89–103.
Spector, P. E., et al. (2024). Optimizing healthcare resources using SEM. Healthcare Management Science, 47(1), 56-75.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Allyn & Bacon/Pearson Education.
Tan, M., & Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv preprint arXiv:1905.11946.
Touvron, H., et al. (2021). Training Data-Efficient Image Transformers and Distillation through Attention. arXiv preprint arXiv:2012.12877.
Vaswani, A., et al. (2018). Attention Is All You Need. Advances in Neural Information Processing Systems (NeurIPS).
Wang, C.Y., et al. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.
Wang, H., & Wang, X. (2012). The Relationship between Academic Self-efficacy and Achievement. Educational Psychology, 32(5), 679-699.
Wang, J., et al. (2020). Patient satisfaction modeling in healthcare using SEM. Health Care Management Review, 45(3), 215-230.
Wang, K., Zhang, Y., & Lin, L. (2019). Innovation in green technologies: SEM insights. Engineering Advances, 41(5), 214–223.
Wang, Y., Chen, M., & Li, Z. (2017). Employee Performance Prediction using SEM and ML Techniques. International Journal of Human Resource Management, 28(12), 1697-1715.
Wang, Y., Zhou, S., & Lee, C. (2023). Spatial machine learning applications in urban planning. Urban Development Studies, 13(2), 188–203.
Wong, K. K., & Kwan, T. (2016). Teacher Professional Development and Student Outcomes. Educational Studies, 42(3), 233-246.
Xia, Z., & Zhang, H. (2023). Investigating consumer trust in e-commerce using SEM. Journal of Business Research, 154, 45–53.
Xu, Z., Yang, C., & Lee, J. (2023). Machine learning models for climate pattern prediction using satellite data. Climatology Advances, 31(2), 154–167.
Zhang, H., Liu, W., & Wang, X. (2022). Predictive modeling for disease detection in MRI data using machine learning. Healthcare Informatics Journal, 29(4), 401–417.
Zhang, X., & Wang, L. (2016). Combining SEM and ML to Enhance Learning Outcome Predictions. Educational Technology & Society, 19(3), 58-68.
Zhu, X., & Goldberg, A. B. (2009). Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers.
Zoph, B., et al. (2020). Learning Data Augmentation Strategies for Object Detection. arXiv preprint arXiv:1906.11172.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Berkalp Tunca

This work is licensed under a Creative Commons Attribution 4.0 International License.